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Systematic Derivation of Order Parameters through Reduced Density Matrices
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A systematic method for determining order parameters for quantum many-body systems on lattices is
developed by utilizing reduced density matrices. This method allows one to extract the order parameter
directly from the wave functions of the degenerate ground states without the aid of empirical knowledge,
and thus opens a way to explore unknown exotic orders. The applicability of this method is demonstrated
numerically or rigorously in models that are considered to exhibit dimer, scalar chiral, and topological
orders.
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Determining order parameters is one of the most impor-
tant issues in the study of many-body systems. A suitably
chosen order parameter for a symmetry-breaking phase
provides an intuitive picture of the long range order and
is the necessary starting point of the Landau-Ginzburg-
type effective description of the system [1]. Combined with
Wilson’s idea of renormalization group [2], such an effec-
tive theory becomes a powerful tool in analyzing the nature
of the phase transitions to other phases.

In spite of the importance of this issue, a general method
to obtain an order parameter in a given model is not
available. The knowledge of previous examples suggests
some candidates, but this empirical method may fail in the
case of a new order. Especially in a system with strong
frustration and/or quantum fluctuation, the order parameter
can be quite nontrivial. With more examples of exotic
orders becoming a subject of great theoretical and experi-
mental interest, a systematic method for determining an
order parameter would be strongly desired.

In this Letter, we present a solution to the quantum
version of this problem. In the quantum case, when a
symmetry of the Hamiltonian is broken spontaneously in
the thermodynamic limit, there appear degenerate ground
states (GS). An order parameter can be identified with an
operator that distinguishes the degenerate GSs. The central
idea of our method is to search such an operator by
comparing the reduced density matrices (RDM) of the
degenerate GSs for various subareas of the system. A
RDM efficiently encapsulates the expectation values of
all the operators on the concerned area. If the RDMs of
the GSs are different on an area, an order parameter can be
defined on that area. In this way, we can determine the
smallest area on which an order parameter can be defined.
Moreover, for the resultant area, we can construct an
‘‘optimal’’ order parameter from the RDMs. This method
can be applied to the low-energy eigenstates obtained by
exact diagonalization, for instance, and can reveal the order
parameter without bias.

We demonstrate the effectiveness of this approach in
concrete models. We consider the multiple-spin exchange
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model on the ladder and detect dimer and scalar chiral
orders that have been found in previous studies [3,4]. We
also consider a resonating valence bond (RVB) liquid in a
solvable quantum dimer model (QDM) [5] and rigorously
show that its GSs cannot be characterized by any local
order parameter [6]. Namely, the model unambiguously is
shown to possess a topological order.

Methodology.—Suppose that we have obtained the low-
energy spectrum and eigenstates of finite-size systems by
exact diagonalization, for instance. In a phase breaking a
discrete symmetry, we find a finite number of nearly de-
generate GSs that become asymptotically degenerate when
increasing the system size. Each of these states does not
break any symmetry of the Hamiltonian, but its quantum
numbers indicate what symmetries are broken in the ther-
modynamic limit.

Let us focus on the simplest case: the Hamiltonian is
invariant under the translation by one lattice spacing, T , is
real in terms of fSzjg basis, and exhibits doubly degenerate
GSs, j�1i and j�2i, with momenta k � 0 and �, respec-
tively. In this case, we expect the breaking of the transla-
tional symmetry (doubling of the unit cell) in the
thermodynamic limit. We set j�1i and j�2i real, i.e.,
Kj�ii � j�ii (i � 1; 2), where K denotes the time-
reversal operator that converts every component of a vector
into its complex conjugate in terms of the fSzjg basis [7].

We construct the symmetry-breaking GSs, j�1i and
j�2i, as linear combinations of j�1i and j�2i. We require
that they be orthogonal (h�1j�2i � 0) and be exchanged
under T (T j�1�2�i / j�2�1�i). There are still two possibil-
ities, depending on whether the time-reversal symmetry is
broken (Kj�1�2�i / j�2�1�i) or not (Kj�1�2�i / j�1�2�i).
For each case, the symmetry-breaking GSs are constructed
as

j�1;2i � �j�1i � j�2i�=
���
2
p
�K� unbreaking case�;

j�1;2i � �j�1i � ij�2i�=
���
2
p
�K� breaking case�:

(1)

Here both possibilities have to be examined since, due to
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FIG. 1. Numbering of the sites on the two-leg ladder.
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the antiunitarity of the time-reversal operator, we do not
know from the quantum numbers whether the system
breaks the time-reversal symmetry or not.

Next we search an operator that distinguishes the
symmetry-breaking GSs by comparing the RDMs �i� �
Tr ��j�iih�ij (i � 1; 2), where � is an area in the system
and �� its complement. To quantify to what extent the two
RDMs are different, we introduce a measure as

diff ��1
�; �

2
�� � max

jO�j�1
jTr��O��

1
�� � Tr��O��

2
��j;

(2)

where O� is a variational (Hermitian) operator on �
satisfying jh jO�j ij � 1 for any normalized vector
j i. If diff��1

�; �
2
��> 0, there exists an operator on �

distinguishing j�1i and j�2i. This measure has the follow-
ing useful properties: (a) normalization to a definite
range 0 � diff��1

�; �
2
�� � 2, for an arbitrary area �;

(b) monotonicity: if an area � completely contains an
area �, we have diff��1

�; �
2
�� � diff��1

�; �
2
��.

Using the eigenvalues f�jg and the eigenvectors fjjig of
��� � �1

� � �
2
�, Eq. (2) can be simplified as

diff ��1
�; �

2
�� � max

jO�j�1

���������
X

j

�jhjjO�jji

����������
X

j

j�jj: (3)

Here the maximization is done by the optimal order pa-
rameter:

O �opt�
� �

X

j

jjisgn�jhjj; (4)

where sgn�j is the sign of �j if �j � 0 and is zero if �j �
0. Both the measure and the optimal order parameter can
be calculated by (numerically) diagonalizing ���. As we
have discussed above, generally we have to examine both
the K-unbreaking and K-breaking combinations in
Eq. (1). In the following, we denote the measure (2) for
the K-unbreaking and K-breaking cases as ‘‘diff1’’ and
‘‘diff2,’’ respectively.

The generalization of this method to systems with more
than two degenerate GSs can be formulated as an optimi-
zation problem, which will be presented elsewhere.

Simple examples.—To illustrate this method, let us con-
sider two simple examples, Néel and dimer orders. The
corresponding symmetry-unbreaking GSs are, respec-
tively, given by

j�N�eel
1;2 i �

1���
2
p �j"# � � �i � j#" � � �i�; (5)
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j�dimer
1;2 i �

1���
2
p �js12i � � � jsN�1;Ni � js23i � � � jsN;1i�; (6)

where jsiji denotes a singlet bond. For the Néel order,
diff1 � 2 for a 1-site area f1g while diff2 is zero for the
same area. Thus, the optimal order parameter should be
constructed from the RDMs of the K-unbreaking GSs on
f1g, resulting in O�opt�

f1g � 2Sz1. For the dimer order, on the
other hand, both diff1 and diff2 are zero for f1g, but we find
diff1 � 3=2> 0 for a 2-site area f1; 2g. The resultant
optimal order parameter (4) for this area is O�opt�

f1;2g � 2S1 �

S2 	 1=2. We have obtained the expected order parameters
for both of the simple examples.

Actually, in order to establish the presence (or absence)
of an order parameter on a given finite area, the measure
‘‘diff’’ (2) has to be defined in the thermodynamic limit.
However, in most of the applications, especially in numeri-
cal calculations, we are able to calculate only the corre-
sponding quantity in finite systems. We expect that, in a
gapped system, the diff should converge exponentially to
the true value, when the system size is taken to infinity.
While the systematic study of such a finite-size effect is
outside the scope of this Letter, the following application
demonstrates the usefulness of our measure even in nu-
merical diagonalization of relatively small systems.

Application I.—We consider the 2-spin and 4-spin ex-
change model with spin S � 1=2 on the two-leg ladder:

H � cos�
X

�

Si � Sj 	 sin�
X

�

�P4 	 P�1
4 �; (7)

where the two summations run over the (vertical and
horizontal) bonds and the squares, respectively. Ac-
cording to recent analyses [3,4], two ordered phases break-
ing the translational symmetry have been found: the stag-
gered dimer phase (0:07� & � < �c) and the scalar chiral
phase (�c < � & 0:39�), separated by the exact self-dual
point �c � tan�1�1=2� ’ 0:1476� [4]; see Fig. 2(a) below.

In both regions, the finite-size spectra obtained from
exact diagonalization exhibit two nearly degenerate singlet
GSs with quantum numbers, �kx; ky; �� � �0; 0; 1� and
��;�;�1�, where �kx; ky� denotes the momentum and �
the reflection with respect to a rung. We constructed
symmetry-breaking GSs from these states and calculated
diff for various areas; see Table I. At � � 0:12�, the
minimum area required to find an order parameter is
f1; 2g, and the time-reversal symmetry is unbroken. Since
��f1;2g is symmetric under the spin rotations and the time
reversal, it must be proportional to S1 � S2, and hence the
optimal order parameter is O�opt�

f1;2g � 2S1 � S2 	 1=2. At
� � 0:19�, the minimum area consists of three sites
(e.g., f1; 2; 10g) and the time-reversal symmetry is broken.
Since ��f1;2;10g is symmetric under the spin rotations and
antisymmetric under the time reversal, we have ��f1;2;10g /

S1 � �S2 
 S10 �, and hence O�opt�
f1;2;10g �

4��
3
p S1 � �S2 
 S10 �. In
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FIG. 2. (a) Phase diagram obtained from earlier studies [3,4].
(b) Values of diff1 and diff2 for the fixed areas, f1; 2; 10g and
f1; 2; 10; 20g, versus �. The values of diff1 (filled symbols) for the
two areas are exactly the same. As for diff2 (open symbols), the
upper and the lower points refer to f1; 2; 10; 20g and f1; 2; 10g,
respectively. Lines are guides to eyes. The vertical dotted straight
line represents the self-dual point �c. Our calculation assumes a
quasidegeneracy of the GSs and is therefore invalid for � &

0:07� and 0:39� & �.
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this way, we have derived the dimer and the scalar chiral
operators as the appropriate order parameters in a system-
atic way.

In Fig. 2(b), � dependence of diff1 and diff2 are shown
for fixed areas. Rapid changes in the values of diff can be
seen around the self-dual point �c, confirming the phase
transition between the two ordered phases. For f1; 2; 10; 20g,
the values of diff1 and diff2 cross exactly at �c. For
f1; 2; 10g, the crossing of diff1 and diff2 deviates from �c
but approaches it when increasing the system size. In
general, such a crossing indicates a phase transition be-
tween ordered phases that cannot be distinguished by the
GS quantum numbers.

Application II.—We next consider a solvable QDM on
the kagome lattice introduced recently [5] (for a review, see
TABLE I. Values of diff for various areas in the 14
 2 ladder.
The points, � � 0:12� and 0:19�, are the representative points,
respectively, in the staggered dimer and the scalar chiral phases
found previously [3,4]. The sites are numbered as shown in
Fig. 1. Some zeros (indicated by �) are exact consequences of
the symmetries.

Area �
� � 0:12� � � 0:19�

diff1 diff2 diff1 diff2

f1g 0� 0� 0� 0�

f1; 2g 0.5698 0� 0.0029 0�

f1; 10g 0� 0� 0� 0�

f1; 20g 0� 0� 0� 0�

f1; 2; 10g 0.5698 0.0267 0.0029 0.3340
f1; 2; 3g 0.6579 0.0670 0.0033 0.2365
f1; 2; 10; 20g 0.5698 0.0462 0.0029 0.5785

04721
also section 5 of Ref. [8]), which is one of the microscopic
models realizing a short-ranged (so-called Z2) RVB liquid.
This model also provides an example of a solvable
Hamiltonian [9] for a topological quantum bit based on a
QDM [10]. Before applying our method, we briefly review
the definition of this model and some basic concepts.

This model is simply expressed in terms of the arrow
representation [11] of dimer coverings defined in the fol-
lowing way. The sites of the kagome lattice K can be
identified with the centers of the bonds of the hexagonal
latticeH. For a dimer covering ofK, we assign orientations
(arrows) to the bonds of H so that the arrow on each site of
K points towards the interior of the triangle of K where the
dimer occupying the site is [see Fig. 3(a)]. As a conse-
quence, the number of incoming arrows is even (0 or 2) at
every triangle. Let S be the set of arrow configurations
satisfying this local parity constraint at every triangle.
There is a one-to-one correspondence between S and the
set of all dimer coverings.

We define �z�i� as the operator that flips the arrow on the
site i of K. Dimer movements can be represented as loop
products of �z operators. The Hamiltonian we consider is
the sum of the loop operators around the hexagons h of
K: H � �

P
h
Q6
��1 �

z�ih;��, where ih;� are the six sites
of the hexagon h.

If this model is defined on a surface with a nontrivial
topology (cylinder, torus, etc.), arrow configurations in S
can be grouped into topological sectors that are not mixed
by any succession of local dimer moves. From now on, we
concentrate on the case of the cylinder for simplicity (but
all the results can be easily generalized to other topolo-
gies). We draw a cut � (passing through the bonds of H)
going from the top to the bottom of the cylinder. We
classify arrow configurations into two topological sectors,
S	 and S�, depending on whether the number of arrows
crossing � to the right is even or odd. The spectrum can be
determined separately in each sector. Using the standard
Rokhsar-Kivelson argument [12], one can show that the
ground state in a given sector is exactly the equal-
amplitude superposition of all dimer coverings (arrow
configurations) belonging to that sector:
Ω∆

∆*

(a) (b)

FIG. 3. (a) Dimer covering and arrow representation. (b) Local
area � on the cylinder. The cut � and the loop �� can be drawn
so as not to touch �.
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j�i �
1
���������
jS�j

p
X

a2S�
jai; � � 	;�: (8)

These two states are exactly degenerate and form a two-
dimensional GS subspace.

Now we consider the RDM of a state j�i in the GS
subspace and discuss how it depends on the choice of j�i.
The area � is given as a set of bonds ofH. The RDM �� �
Tr ��j�ih�j is defined by tracing out the degrees of freedom
(arrows) on ��:

ha1j��ja2i �
X

�a

ha1; �aj�ih�ja2; �ai; (9)

where a1 and a2 are arrow configurations on � and the sum
is over all the arrow configurations �a on ��. By expressing
j�i �

P
���j�i with

P
�j��j

2 � 1, �� can be expanded
as

�� �
X

�;	

����	M
�	
� ; M�	

� � Tr ��j�ih	j: (10)

First, we assume that � is a (finite) local area; see
Fig. 3(b). We prove the following relations:

M	�
� � 0; M�	

� �M �� �	
� ; (11)

where the overbars represent the sign flip. To prove the first
relation, we choose the cut � so as not to touch �. Then the
parity along � for an arrow configuration depends only on
its part on ��. Let us consider the matrix element of M	�

� :
ha1jM

	�
� ja2i �

P
�aha1; �aj	ih�ja2; �ai. Since the two

configurations, �a1; �a� and �a2; �a�, have common parity,
ha1; �aj	i and h�ja2; �ai cannot be nonzero at the same
time, and hence we obtain M	�

� � 0.
To prove the second relation in Eq. (11), we draw a loop

�� (passing along the bonds of H) encircling the cylinder
so as not to touch the area �. We introduce a loop operator
along ��: Tz�� � �i2���z�i�. This operator acts only on ��

and maps j�i to j�i, showing M�	
� � Tr ���T

z
�� j ��i


h �	jTz�� � � Tr ���j ��ih �	j�T
z
�� �

2� �M �� �	
� .

From Eqs. (10) and (11), we see that �� is independent
of the choice of j�i. Thus, no order parameter can be
defined on an arbitrary local area. In the context of topo-
logical quantum bit based on QDMs [9,10], this shows the
stability of quantum information against external noises
(coupling locally to dimers).

The situation is different if � has a nontrivial topology,
namely, extends from the top to the bottom of the cylinder
(case A) or encircles the cylinder (case B). In case A, we
can choose the cut � inside �. Then the parity along � can
be expressed as the operator acting on � and distinguishes
the different topological sectors. It can be considered as a
nonlocal order parameter distinguishing j	i and j�i.
Similarly, in case B, two states �j	i � j�i�=

���
2
p

are
distinguished by the loop operator Tz�� with �� defined
inside �.
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We have shown that the GSs of this QDM cannot be
distinguished by any local operator but by nonlocal opera-
tors defined on areas with nontrivial topologies. We com-
ment that a similar result has been shown without using
RDMs by Ioffe and Feigel’man [13] in their study on a
related model. We stress, however, that our formulation
based on RDMs has an advantage in its generality. As
demonstrated in the ladder model, it can be applied to
models without exact solutions, by combining it with
numerical calculation, for example.

Conclusions.—We have developed a method that can
determine order parameters without using any empirical
knowledge. The two applications confirmed its applicabil-
ity to exotic orders and, especially, its relevance for ana-
lyzing topological orders. We expect that our method will
shed some light on the controversies in some frustrated
quantum antiferromagnets (see Ref. [8] and references
therein), e.g., the J1 � J2 model on the square lattice and
the multiple-spin exchange model on the triangular lattice.
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